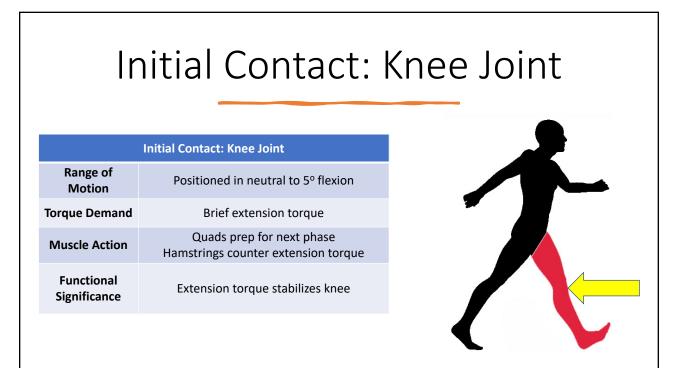


***		Pha	ases c	of Ga	ait		* EL *
Stance Phase Swing Phase							
Weight Acceptance		Single Lir	nb Support	t Swing Limb Advanceme		ment	
Initial Contact	Loading Response	Mid- Stance	Terminal Stance	Pre- Swing	Initial Swing	Mid- Swing	Terminal Swing

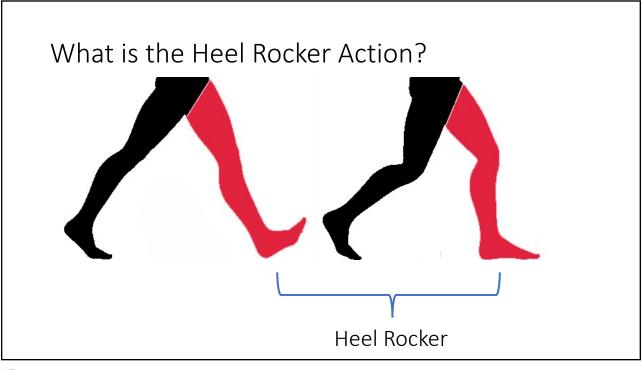


Stance Phase			S	Swing Phase	9		
Weight Acceptance Single Limb Support		S	wing Limb A	dvanceme	nt		
Initial Contact	Loading Response	Mid- Stance	Terminal Stance	Pre- Swing	Initial Swing	Mid- Swing	Terminal Swing
0%	0-12%	12-31%	31-50%	50-62%	62-75%	75-87%	87-100%

Initial Contact: Ankle Joint

	Initial Contact: Ankle Joint		
Range of Neutral pos Motion	sition		
Torque Demand Plantarflexion	torque		
Muscle Action Isometric contraction of	pretibial muscles		
FunctionalFoot correctly positioneSignificanceaction in			

13


Initial Contact: Hip Joint

Initial Contact: Hip Joint		
Range of Motion	Flexed 20°	
Torque Demand	Rapid, high intensity flexion torque	
Muscle Action	All hip extensors active Semimembranosis and biceps femoris long head activity wanes	
Functional Significance	Hip in position of forward reach	

15

Loading Response: Ankle Joint

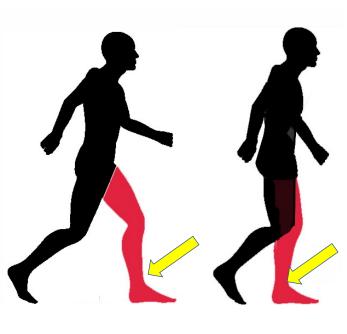
Lo	oading Response: Ankle Joint	
inge of Iotion	5° of rapid plantarflexion	
e Demand	Plantarflexion torque forces foot to floor then diminishes	
cle Action	Pretibials contract eccentrically Soleus and gastrocnemius act to control tibial advancement	
nctional nificance	Heel rocker action created Momentum carried forward Knee flexion initiated	

17

Loading Response: Knee Joint

Lc	oading Response: Knee Joint	
Range of Motion	Moves to 15° flexion	
Torque Demand	Rapid, moderate intensity flexion torque	
Muscle Action	Eccentric quadriceps activity Diminished hamstring activity	
Functional Significance	Shock absorption Limb stability maintained	

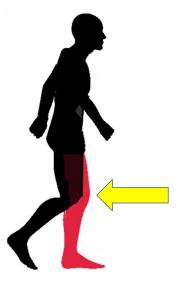
Loading Response: Hip Joint


Loading Response: Hip Joint		
Range of Motion	Remains in 20° of flexion	
Torque Demand	Rapid, high intensity flexion torque Adduction torque begins	
Muscle Action	Hip extensors and abductors active	
Functional Significance	Hip, pelvis and trunk stabilized in sagittal and frontal planes	

19

Mid-Stance: Ankle Joint **Mid-Stance: Ankle Joint** Range of Moves into 5° of DF Motion **Torque Demand** Markedly increasing DF torque Soleus & gastrocsoleus contract **Muscle Action** eccentrically to control forward progression of the tibia Calf muscles stabilize knee Functional Ankle rocker action created Significance Body progresses forward

What Does the Ankle Rocker Provide?


Ankle becomes fulcrum for continued progression of limb over stationary foot

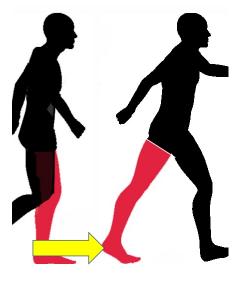
21

Mid-Stance: Knee Joint

Mid-Stance: Knee Joint			
Range of Motion	Extends to 5° flexion		
Torque Demand	Extension torque		
Muscle Action	Quads stabilize knee until knee extension torque begins Calf muscles restrain tibia allowing femur to advance faster		
Functional Significance	Knee stability maintained by knee extension torque and calf activity		

Mid-Stance: Hip Joint

Range of MotionExtension to neutralTorque DemandChange from flexion to extension torque Adduction torque continuesMuscle ActionNo hip muscle activity in sagittal plane Hip abductors activeFunctional SignificanceStable hip joint position achieved in sagittal plane Pelvis stabilized in frontal plane	Mid-Stance: Hip Joint			
Functional Stable hip joint position achieved in sagittal plane	-	Extension to neutral		
Muscle Action Hip abductors active Functional Stable hip joint position achieved in sagittal Significance plane	Torque Demand	5		
Functional plane	Muscle Action	, , , ,		

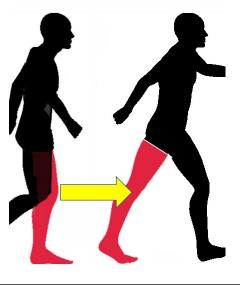


23

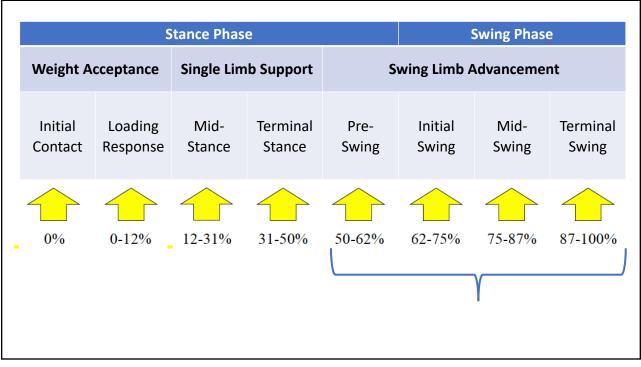
Terminal Stance: Ankle Joint

Terminal Stance: Ankle Joint		
Range of Motion	Moves into 10° of DF	
Torque Demand	Dorsiflexion torque peaks	
Muscle Action	Calf muscle activity peaks	
Functional Significance	Maximal forward progression of the tibia Heel allowed to rise	

Don't forget about the great toe here!



25


Terminal Stance: Knee Joint

Terminal Stance: Knee Joint		
Range of Motion	Unchanged from MSt in 5° of flexion	
Torque Demand	Extension torque peaks and then diminishes	
Muscle Action	Calf muscles continue to stabilize knee by restraining tibia Biceps femoris may be active	
Functional Significance	Joint mobility maintained Biceps femoris may act to prevent recurvatum	

Terminal Stance: Hip Joint

Terminal Stance: Hip Joint		
Range of Motion	Thigh moves to trailing position of 20° extension	
Torque Demand	Hip extension torque Adduction torque rapidly diminishes	
Muscle Action	Posterior fibers of TFL cease Anterior fibers of TFL may become active	
Functional Significance	Body allowed to advance past foot to maximize step length while limb remains stable	

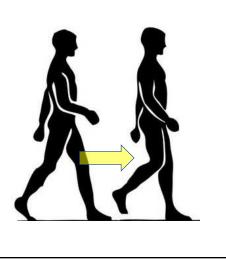
Pre-Swing: Ankle Joint

Pre-Swing: Ankle Joint	
Range of Motion	Moves into 15° of plantarflexion
Torque Demand	Dorsiflexion torque rapidly decreases
Muscle Action	Calf muscle activity ceases Pretibial muscle activity initiated
Functional Significance	Forefoot on floor assists balance Plantarflexion assists knee flexion and limb advancement
Don't forget about the great toe here!	

29

Pre-Swing: Knee Joint **Pre-Swing: Knee Joint** Range of Rapid flexion to 40° Motion **Torgue Demand** Flexion torque demand Minimal knee flexor activity from gracilis **Muscle Action** Rectus femoris may be active Contributes significantly to knee flexion for Functional limb clearance Significance Rectus femoris may restrain speed of knee flexion

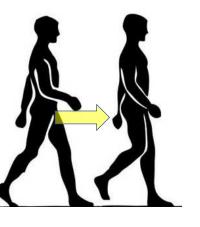
Pre-Swing: Hip Joint


Pre-Swing: Hip Joint	
Range of Motion	Thigh flexes forward by falling to position of 10° of extension
Torque Demand	Hip extension torque diminishes
Muscle Action	Adductor longus contracts concentrically Rectus femoris may be active
Functional Significance	Limb advancement begins Hip flexion motion contributes to knee flexion

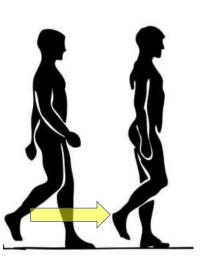
31

<section-header>Initial Swing: Ankle JointName of
MotionInitial Swing: Ankle JointName of
MotionMoves into 5° of PFTorque Demand
Morsi Petibial muscles contract concentrically to
initiate DFNuscle Action
SignificancePretibial muscles contract concentrically to
phase begins

Initial Swing: Knee Joint

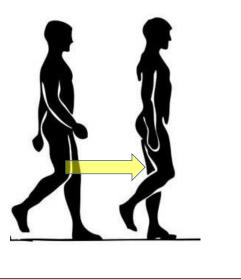

Initial Swing: Knee Joint	
Range of Motion	Further rapid flexion to 60°
Torque Demand	Knee flexion torque
Muscle Action	Peak in activity of biceps femoris short head, sartorius, and gracilis
Functional Significance	Foot clears floor as thigh begins to advance

33

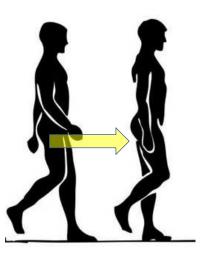

Initial Swing: Hip Joint Initial Swing: Hip Joint Range of Moves to position of 15° flexion

Motion	Moves to position of 15° flexion
Torque Dema	hd Hip extension torque initially, moving to neutral by end of phase
Muscle Actio	n Iliacus, gracilis, sartorius, and adductor Iongus active
Functional Significance	Limb advancement continues

Mid-Swing: Ankle Joint

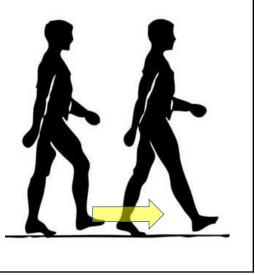

Mid-Swing: Ankle Joint	
Range of Motion	Dorsiflexion to neutral
Torque Demand	Very low level of PF torque
Muscle Action	Pretibial muscles contract concentrically
Functional Significance	Foot clears the ground by 1cm

35

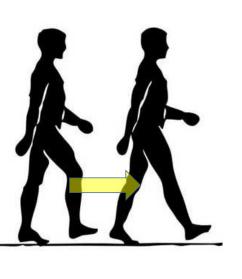

Mid-Swing: Knee Joint

Mid-Swing: Knee Joint	
Range of Motion	Rapidly extends to 25° of flexion
Torque Demand	Transition to knee extension torque late in phase
Muscle Action	Short head of biceps femoris may control rate of extension Hamstrings active late in phase
Functional Significance	Extension necessary for step length begins in this phase

Mid-Swing: Hip Joint

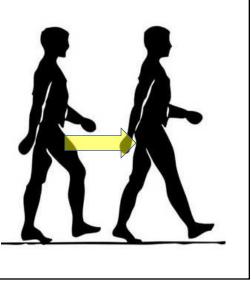

Mid-Swing: Hip Joint	
Range of Motion	Moves to position of 25° flexion
Torque Demand	Gradually increasing hip flexion torque
Muscle Action	Hamstrings become active late in phase
Functional Significance	Thigh advancement slows Momentum of swing limb helps carry body past stance limb

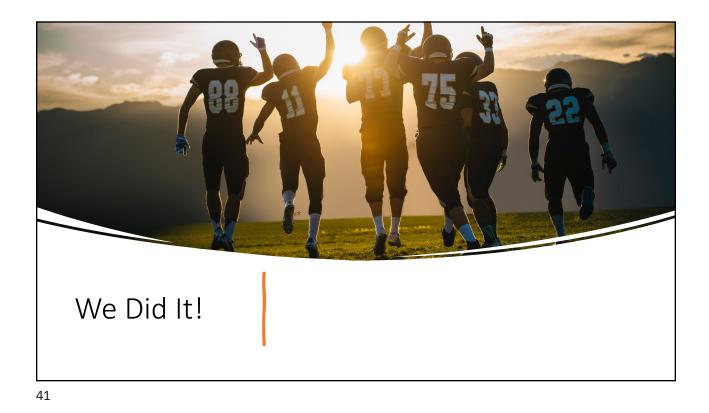
37


Terminal Swing: Ankle Joint

Terminal Swing: Ankle Joint	
Range of Motion	Remains in neutral
Torque Demand	Plantarflexion torque diminishes to 0°
Muscle Action	Pretibial muscles contract isometrically
Functional Significance	Neutral position assures heel contact for initial contact

Terminal Swing: Knee Joint


Terminal Swing: Knee Joint	
Range of Motion	Extends to neutral, but then may move into 5° flexion
Torque Demand	Extension torque
Muscle Action	Flexion torque (restraining extension)
Functional Significance	Step length optimized by leg reaching out




39

Terminal Swing: Hip Joint

Terminal Swing: Hip Joint	
Range of Motion	Falls slightly to position of 20° flexion
Torque Demand	Hip flexion torque diminishes at end of phase
Muscle Action	Hamstrings peak in activity Adductor magnus, gluteus maximus & medius, and TFL become active
Functional Significance	Limb positioned for heel first initial contact

With which phase of gait would hypertonicity of the hamstrings following a stroke be **MOST** likely to interfere?

43

QUESTION 1

With which phase of gait would hypertonicity of the hamstrings following a stroke be **MOST** likely to interfere?

- 1. Terminal swing
- 2. Pre-swing
- 3. Initial swing
- 4. Mid swing

With which phase of gait would hypertonicity of the hamstrings following a stroke be **MOST** likely to interfere?

- 1. Terminal swing
- 2. Pre-swing
- 3. Initial swing
- 4. Mid swing

45

QUESTION 1

Looking Beyond the Right Answer

- Describe the physiology that contributes to tone.
- How would you grade tone?
- What manual therapy or exercise techniques can be used to inhibit tone?
- What pharmacologic agents are used to reduce tone?

During which phase of the gait cycle is the greatest amount of metatarsophalangeal extension needed?

47

QUESTION 2

During which phase of the gait cycle is the greatest amount of metatarsophalangeal extension needed?

- 1. Pre-swing
- 2. Terminal stance
- 3. Initial swing
- 4. Mid-swing

During which phase of the gait cycle is the greatest amount of metatarsophalangeal extension needed?

- 1. Pre-swing
- 2. Terminal stance
- 3. Initial swing
- 4. Mid-swing

49

QUESTION 2

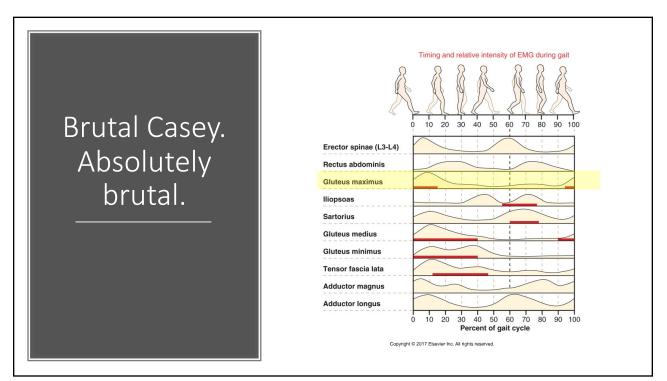
Looking Beyond the Right Answer

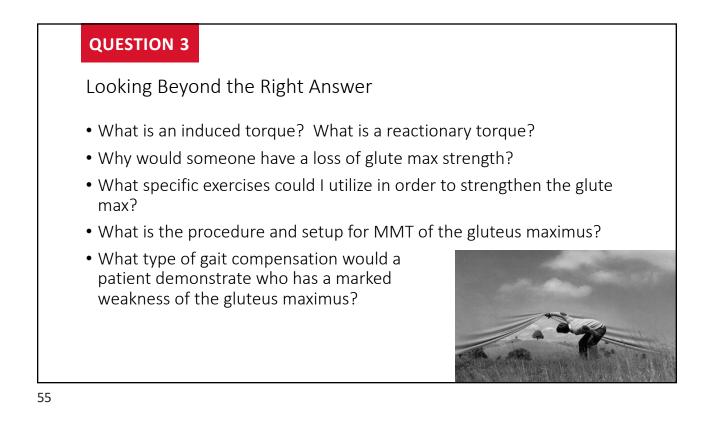
- What are the landmarks used when measuring MTP extension?
- What is considered normal MTP extension ROM?
- What muscle is largely responsible for MTP extension strength?
- A lesion to what nerve root would lead to a loss of 1st MTP extension strength?
- What grade and direction of mobilization would you use to increase MTP extension ROM?

During which phase of the gait does the highest flexion torque occur upon the hip joint?

51

QUESTION 3


During which phase of the gait does the highest flexion torque occur upon the hip joint?

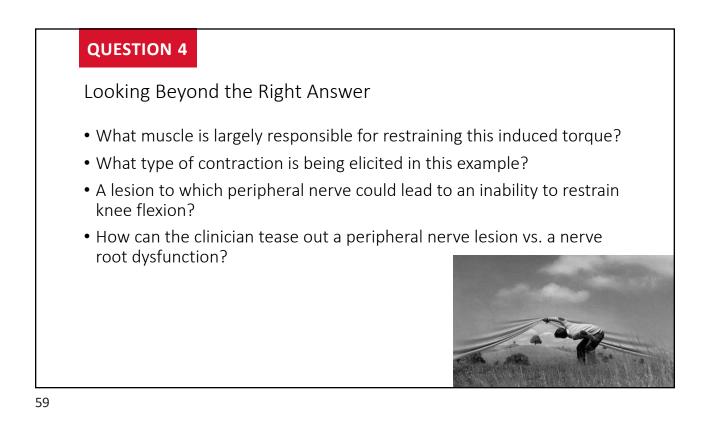

- 1. Initial contact
- 2. Loading response
- 3. Terminal swing
- 4. Mid-swing

During which phase of the gait does the highest flexion torque occur upon the hip joint?

- 1. Initial contact
- 2. Loading response
- 3. Terminal swing
- 4. Mid-swing

Which of the following critical events is crucial for shock absorption during the loading response phase of gait?

Which of the following critical events is crucial for shock absorption during the loading response phase of gait?


- 1. Ankle rocker
- 2. Restrained knee flexion
- 3. Restrained ankle dorsiflexion
- 4. Forefoot rocker

57

QUESTION 4

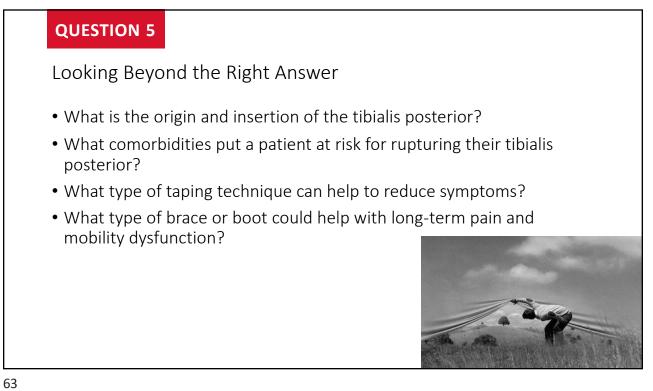
Which of the following critical events is crucial for shock absorption during the loading response phase of gait?

- 1. Ankle rocker
- 2. Restrained knee flexion
- 3. Restrained ankle dorsiflexion
- 4. Forefoot rocker

A patient presents to you with a ruptured posterior tibialis tendon. Which phase of the gait cycle is most likely to demonstrate dysfunction?

A patient presents to you with a ruptured posterior tibialis tendon. Which phase of the gait cycle is most likely to demonstrate dysfunction?

- 1. Mid-stance
- 2. Pre-swing
- 3. Initial contact
- 4. Mid-swing


61

QUESTION 5

A patient presents to you with a ruptured posterior tibialis tendon. Which phase of the gait cycle is most likely to demonstrate dysfunction?

1. Mid-stance

- 2. Pre-swing
- 3. Initial contact
- 4. Mid-swing

A patient demonstrates an abnormal gait pattern during midswing. Which of the following options is most likely to contribute to this dysfunction?

A patient demonstrates an abnormal gait pattern during midswing. Which of the following options is most likely to contribute to this dysfunction?

- 1. Limitation of hip extension range of motion
- 2. Weakness of the hamstring muscles
- 3. Limitation of subtalar eversion range of motion
- 4. Weakness of the pretibial muscles

65

QUESTION 6

A patient demonstrates an abnormal gait pattern during midswing. Which of the following options is most likely to contribute to this dysfunction?

- 1. Limitation of hip extension range of motion
- 2. Weakness of the hamstring muscles
- 3. Limitation of subtalar eversion range of motion
- 4. Weakness of the pretibial muscles

Looking Beyond the Right Answer

- What abnormal gait pattern is consistent with a 1/5 MMT for the pretibials? What type of AFO could help to accommodate for this?
- What abnormal gait pattern is consistent with a 3/5 MMT for the pretibials? What type of AFO could help to accommodate for this?
- What myotome is largely responsible for dorsiflexion?

67

QUESTION 7

A patient demonstrates difficulty maintaining single limb support. Which of the following muscles is most likely contributing to the dysfunction?

A patient demonstrates difficulty maintaining single limb support. Which of the following muscles is most likely contributing to the dysfunction?


- 1. Weakness of the quadriceps
- 2. Weakness of the hamstring
- 3. Weakness of the gluteus medius
- 4. Weakness of the gluteus maximus

69

QUESTION 7

A patient demonstrates difficulty maintaining single limb support. Which of the following muscles is most likely contributing to the dysfunction?

- 1. Weakness of the quadriceps
- 2. Weakness of the hamstring
- 3. Weakness of the gluteus medius
- 4. Weakness of the gluteus maximus

Thanks for Tuning In!

Visit our website www.scorebuilders.com for more information

on all of our products.

